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Abstract. An innovative Particle In Cell method, aimed at reducing the numeridaéraharacterising classical PIC schemes,
has been investigated in the framework of ionospheric plasma simulalibesaumerical model is composed of a kinetic
equation for the plasma coupled with the Maxwell-Faraday law driving tbkigen in the magnetic field.

INTRODUCTION

In this paper we investigate the evolution of the ionosghplasma and more precisely, the interaction of plasma
bubbles with the earth magnetic field. The plasma composiesetbubbles can be assumed quasi-neutral but not in a
thermodynamical equilibrium and thus requires a kinetiscdigtion. In these first stages of the study the collision
processes, although very important in the ionosphere xbfdee 1], are disregarded and postponed to a future
work. We propose a simplified model consisting of a Vlasovatigm for the plasma coupled to the Maxwell-Faraday
equation for the magnetic field evolution, where the eledieid is provided by a generalised Ohm’s law. It is derived
under the same assumptions as the Magneto-Hydro-Dynandelrhat with a kinetic description of the plasma. The
numerical method relies on a moment guided method intratlircfb] which aims at reducing the numerical noise of
classical particle method. It has proven to be very efficierthe context of collisional rarefied gas dynamics and is
investigated here in a different framework. One dimendionanerical experiments are proposed to give a first view
of the numerical method efficiency.

A MODEL FOR THE EVOLUTION OF A IONOSPHERIC PLASMA IN A NON
THERMODYNAMICAL EQUILIBRIUM

A kinetic description of the ionospheric plasma

The system relies on a kinetic description for the ions andid fine for the electrons coupled to the Maxwell's
equations for the electromagnetic field evolution. The &qua are detailed with dimensionless quantities obtained
thanks to typical space and velocity scaleand u defining the time scalé = x/u. We denote byE, B, T andn”
the typical values for the electric and magnetic fields ad a®lthe plasma temperature and density, we introduce

f = n/(0®) the typical value for the distribution function. Using teexcales to define dimensionless variables yields

%+V.Dxf+r](E+anxB)-va:0. (1)



The electro-magnetic fiel(E, B) is a function ofx andt, its evolution being driven by the Maxwell’'s equations
a JE
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In these equationg and j are respectively the charge and current densities as défined= ne — n;, j = Nju; — NgUe,
where the electronic density and velocity obey

ONe+ Oy - (Nglle) =0, (6)

&2 (Gt (NeUe) 4 Ox - (NeUe @ Ug) ) 4 LxPe(Ne) = —NNe(E + aBue x B) . (7)

The ionic density and momentum are providedrby [ fdv, nu = [ fvdv. This system relies on the following
dimensionless parameters

& =me/m the ratio of the electronic and ionic masses;

B = c§/E_wherec is speed of light;

a = u/cthe ratio of the typical macroscopic velocity to the speeligbt;

A2 = gokgT /(€2nx?) is the dimensionless squared Debye lengitheing the vacuum permittivitg the elementary
charge;

n = eIE_%/ml]2 is the ratio of the momentum transport term and the Lorentzfo

Scaling relations

First we assume an entire Lorentz force comparable to thespre term for both electrons and ions, which means
n =1 as well asaf3 = 1. The electron inertia is then disregarded and the plasraassmed quasi-neutral which
translates int& — 0 andA — 0. The latter limit, thanks to the Gauss law (4), provides= n; = n, the former one
transforms the electronic momentum equation (7) in theadlea generalised Ohm’s law :
Oxpe=—N(E4+uxB)+jxB. (8)

In this expressiou = y; is the plasma velocity. Finally the current caused by thdéiggarmotion is assumed large
enough to produce changes in the magnetic field. This lastseant yieldsx /(8nA2) = 1 which, using all the above
hypotheses, gives /B = A2: the displacement current vanishes in Ampere’s equatidohwdegenerates into

OxxB=j. 9)

A simplified model problem for the ionospheric plasma interations with the ambient
magnetic field

The model obtained with these scaling relations and expdessth dimensional quantities reads as a Vlasov
equation coupled with the Maxwell-Faraday law

of e
E+V~Dxf+ﬁ(E+vx B)-Oyf =0, (20)
oB
ﬁ+DX><E:O, (11)
where the magnetic field is divergence frelg; B = 0 and the electric field is defined by (8) as,
E=—(u—0OxxB/(oen) x B, (12)

Lo being the vacuum permeability. Note that, for sake of sinifyliwe have omitted the electronic pressure term in the
generalised Ohm’s law. These equations can be regardediasti lextension of the Hall-MHD system. This point
will be detailed further in the sequel.



NUMERICAL METHODS

The “moment guided method”

The moment guided method has been introduced in [5] in théegbof rarefied gas dynamics described by the
Boltzmann equation. It is aimed at reducing the numericéencharacteristic of particle methods widely used to
discretize kinetic equations. The idea is to decompose idtghilition function as a Maxwellian corrected with an
additional functiong: f = .#, 71 +g. In this decomposition the MaxwellianZ, , T shares the same first three mo-
ments with the distribution function(x,t) = ( ), u(x,t) = (v f), T(x,t) = & (|v—u[?f ), where(f) = [ f(x,v,t)dV.
Inserting this decomposition in the Vlasov equation and mating the first moments yields tt,eoment model

on
gt T (=0,
anu 1
M-+ Ox: (mnugu— %B@@ B) + Oxpror = —mlx- (V@ Vg), (13)
0 1 m
V(\;EOT +0- (WrOTU+ ProTu— m(B' U)B) = _§DX' <|V|2Vg>7

where® is the tensor produckg being the Boltzmann constant, the total pressure and emeegyefined as
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These equations are coupled to the induction equation
0B Ox x B
0,[+DX-(U®B—B®U):—DX><< Joen>XB' (15)

Note that the moment model (13 — 15) is very close to the HallEMsystem but with correction terms as second mem-
bers for the momentum and energy conservation equatioseTkinetic corrections are explained by a distribution
function that is not reduced to a Maxwellian. The moment rhiglderived from the Vlasov equation (10) coupled
to the Maxwell-Faraday law (11) without any approximati@msl should provide the same macroscopic quantity as
the one obtained thanks to the Vlasov equation. The guidiagegy performed at each time step is depicted in fig-
ure 1. It consists in using the informations provided by th@mant model to correct particles properties, so that, the

£m Kinetic model Fm1 fm+1  The distribution function is advanced by means of the kinetic equation
Kineti providing f™1. At the same time the macroscopic quantiti#® are
Y CorreC . Matching advanced thanks to the moment model with kinetic corrections evalu-
”Ons procedure ated withf™ and givingu ™. These quantities are used to perform the
UmMHD SystengmH yml matching procedure aimed at correcting particle properties and comput-

ing the new distribution functiod™ 1,

Moment model
FIGURE 1. Schematic representation of a typical time step for the moment guided dnetho

moments of the advanced distribution function match therosmopic quantities computed by the moment model.
This correction applied to the particle properties cossi&tr each cell, in creating or discarding particles, inevrid
match the first order moment (density), and applying a litreensformation to particle velocity in order to match local
mean velocities and pressures. We refer to [5] for a compleseription of this correction procedure. This strategy
is completely different to that of the most recent methoasea at reducing the statistical fluctuations, namely the
molecular block model DSMC [12] or the Information Pres¢éii DSMC method [7, 15]. The block model exploits
the dependance of the statistical error on the gas moleadas [see 11]. A molecular block account for a large num-
ber of particles, and replaces the the conventional sinoulgtarticles, with a modified mass and cross section. This
method has proven to change the flow Mach number [17] and mock i& needed to improve it. The IP-DSMC is
an alternative that has received a large interest. In ttpsogeh the simulated particles carry additional inforonadi

the preserved quantities, that can be interpreted as ambieaverage from a large set of real molecules represented
by the simulation particle. These preserved quantitiesally the velocity [7] referred to as the information velity,
subsequently extended to the density and the temperatut8,[94], are used to evaluate the macroscopic flow field.



However, the derivation of the equations driving the evolubf the preserved quantities relates on some assumptions
(a Maxwellian distribution is assumed for each cell in [1&uitive formulation or approximations [14, 10]. These
methods are more demanding in terms of mermory usage, tleastahdard (DSMC) ones, and have shown some
weakness in describing shock structures [9]. The approachlaped here does not suffer any approximation in the
moment model derivation and is motivated by the statementiie quantities computed thanks to this model contain
less statistical error than the solution of the kinetic digua

Overview of the numerical methods

As briefly mentioned above, the numerical methods rely on atidRaIn-Cell scheme [2, 8] using
macro particlesp € &2 defined by their position, velocity and weighKy(t),Vp(t), wp) such thaf(x,vt) =
Y pez Wpd (X—Xp(t)) 8 (V—Vp(t)) , whered is the Dirac delta function andy,, V,, satisfy Newton's laws

d>;pt(t) (), d\g)t(t) _ %(E(xp)Jrvpr(xp)). (16)

The particle motion is integrated with a classical leapfsseme for which the particle position is computed on
integer time steps with velocity on half time steps. A cleakiBoris Push ([see 2, 8]) is used to integrate the
differential equation for the particle velocity. The elerhagnetic field is computed on a grid thanks to the definition
of the macroscopic quantities defined on each cell accortirgarticle properties. After the computations of the
electromagnetic field, the grid quantities are interpaldtack onto the particles allowing the Newton’s law (16)
integration. The projection of macroscopic quantities af as the interpolation of grid quantities at particle piosi

are achieved thanks to a projection-interpolation schamk as thé\earest Grid Poinbr theCloud In Cell[2, 8].

The moment model (13 — 15) is discretized thanks to an upwitgree [6] supplemented with a generalised
Lagrangian multiplier [4] to ensure a divergence free mégrild. The correction terms accumulated from particle
properties are finite differenced. For the moment, the Hdatht(.e., the second member) in the induction equation (15)
is disregarded and its discretization is reported in futupek.

NUMERICAL RESULTS

The efficiency of the moment guided method is illustrated aingulation carried out for a one dimensional space
configuration with three components for both the magnetid éied the velocity. It consists of a “Brio and Wu” shock

tube [3] widely used for the validation of numerical scherdesigned for the MHD system. The grid is composed
of 200 cells. A first order accurate time discretization hasrbused for all these simulations. The plasma density

and hydrodynamic energyy as well as theBy magnetic field component are represented in figure 2. Theickds
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FIGURE 2. Comparisons of the plasma density, hydrodynamic energy and madjeticomponenBy at timet = 0.25 s., as
computed by the moment guided method, and classical Particle-In-@étloahs using NGP and CIC schemes. For the moment
guided method an NGP scheme has been used. The grid is compo$¥tasfig, a total of 21C° particles being used.

PIC methods relying on either a NGP or a CIC projection-mation scheme are compared with the moment guided
method using a NGP scheme. A total ofi2P particles have been used to compute these approximatibasndment
model is discretized thanks toR scheme [6] equivalent to the Rusanov one [13], with a secoderdMUSCL [16]
reconstruction. For the classical PIC method, the magfiietitis computed by the MHD-system discretized by the
same space and time schemes, with macroscopic quantifieedlérom particle properties thanks to the projection
scheme. The approximations computed by all three meth@lsamnparable. However, the moment guided method



seems to reduce, at least in a small ratio, the numericagéndlee influence of the number of particles as well as the
space discretization of the moment model is investigatadks to additional computations carried out on the same
mesh but with more particles (207). These results are displayed on figure 3. The approximationputed with a

e (a) Density. , (b) Hydrodynamic energy). (c) Magnetic field By).
) <©-NGP ’ ©-NGP ©-NGP
= CIC L & CIC 15 = CIC
-o-Guided(1 5 -o-Guided(1] P -o-Guided(
P - Guided -+ Guided - Guided

1.5

-1 -0.5 0 0.5 1 =1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

FIGURE 3. Comparisons of the plasma density, hydrodynamic energy and theetiafiald componenBy at timet = 0.25 s.,

as computed by the moment guided method, and classical Particldlim&bods using NGP and CIC schemes. For the moment
guided method an NGP has been used with a first (Guided(1)) or séGaoidkd) order space discretized moment model. The grid
is composed of 200 cells with-207 particles.

first order space disretization is referred to as “Guidéd(iljhese plots. The first order scheme gives more diffusive
results. This feature is made obvious by observing the suagsociated with the first and the second order space
discretizations, particularly for the density and hydnoeamic energy plots in the area around the absciss®. The
larger number of particles used for this computation allavieetter control of the numerical noise as compared to that
of the simulation of the figure 2. Note that the approximatipnovided by the classical PIC method with either the
NGP or the CIC schemes are very close.

Finally the numerical noise reduction properties of the ranotrguided method are investigated. With this aim, a
reference solution is computed on the same 200-cells gthi 16 particles in a cell. This is ten times more particles
as compared to the simulation results of figure 3 for whichrthmerical noise is already very small. On figure 4
this reference solution is compared with an approximatmmuted using only T0particles in a cell. Two plots are
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FIGURE 4. Numerical noise of the approximations estimated by the difference betiveecomputations realized with3and
1P particles per cell for the classical PIC methods and the moment guidtkdcheith first (Guided) and second order (Guided(2))
space discretizations: (a) Difference as a function of the space leaf@tthe plasma density approximations; (norm of the
differences divided by the norm of the variables for the plasma densiteaergy as well as the magnetic fieR} component).

displayed, the first one is the difference of the two plasmesitle approximations as a function of the space variable
X, the second one is tHg-norm of this difference for the plasma density &nd hydrodynamic energy\{) as well

as the magnetic field componeBy. For this later plot, the norm of the differences are divitbgcthe corresponding
variables norm, in order to plot dimensionless quantifidse approximations computed thanks to the CIC and NGP
schemes being very close, only the NGP results are displaydte classical PIC method and is compared, on this
figure, with the first and second order space discretized mbgweded method. The moment guided method with the
less diffusive space discretization is observed to progweeerical approximation globally less subject to numérica
noise than the standard PIC method (see figure 4(b)). Thisrieeas enforced when a first order space discretization
is used, but at the price of larger numerical diffusion aigisignificantly the approximation quality (in comparison
with the approximation computed thanks to standard PIC austlusing a large humber of particles) as depicted in
figure 3(a) and 3(b).



CONCLUSIONS AND PERSPECTIVES

In this paper we have proposed a numerical model for the pireric plasma description and its interaction with the
earth magnetic field. It consists of a kinetic descriptiothefplasma coupled to the Maxwell-Faraday equation driving
the evolution of the magnetic field. The numerical methoakssbn a Particle-In-Cell method for the kinetic equation
discretization and a finite volume scheme for the magnetid iee. A noise reduction method has been tested in
this framework. It uses the information carried out by a motmaodel in order to correct the particles properties and
finally reduce the numerical noise characteristic of pesimethod. The first simulations performed demonstrateesom
interesting benefits. Future work will be devoted to the esi@ns of these first results to two dimensional problems
with the introduction of more complete collision processesrder to address more accurate and relevant physics.
Moreover, as demonstrated in [5], the collisions shouldaase the efficiency of the moment guided method with
respect to the numerical noise reduction.
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